Asymmetric half-cone/nanohole array films with structural and directional reshaping of extraordinary optical transmission.
نویسندگان
چکیده
Structured films with periodic arrays of nanoholes covered by half-cone shells are fabricated via a simple and efficient colloidal lithography method. The designed films show strong polarization dependence in optical transmission. By decreasing the height of half-cone shells the peak shifts and this shift varies strongly for different orthogonal polarizations. Furthermore, the three-dimensional (3D) asymmetric arrays exhibit a pronounced increase in the transmission intensity by changing the direction of the incident light from the half-cone shell (shelter) side to the empty side. Special surface plasmon resonances excited by the unique 3D asymmetric structure are responsible for these novel properties, and the experimental results are in good agreement with numerical simulations. The nanostructured films in this work will be useful for metallic nanophotonic elements in many applications, including surface plasmon enhanced optical sensing and ultrafast optical switching, as well as versatile substrates for surface enhanced Raman spectroscopy, anisotropic wettability and other potential uses.
منابع مشابه
Optimized Design of Nanohole Array-Based Plasmonic Color Filters Integrating Genetic Algorithm with FDTD Solutions
Recently, significant interest has been attracted by the potential use of aluminum nanostructures as plasmonic color filters to be great alternatives to the commercial color filters based on dye films or pigments. These color filters offer potential applications in LCDs, LEDs, color printing, CMOS image sensors, and multispectral imaging. However, engineering the optical characteristics of thes...
متن کاملExtraordinary optical transmission for surface- plasmon-resonance-based sensing
In 1998, Ebbesen and co-workers demonstrated the surprising result that arrays of small holes in a metal show optical transmission resonances [1]. This result was surprising because Bethe's aperture theory predicts negligible transmission through a single small hole in a thin metal film. As a result the phenomenon was termed extraordinary optical transmission (EOT). Unfortunately, the term EOT ...
متن کاملGold Nanohole Array with Sub-1 nm Roughness by Annealing for Sensitivity Enhancement of Extraordinary Optical Transmission Biosensor
Nanofabrication technology plays an important role in the performance of surface plasmonic devices such as extraordinary optical transmission (EOT) sensor. In this work, a double liftoff process was developed to fabricate a series of nanohole arrays of a hole diameter between 150 and 235 nm and a period of 500 nm in a 100-nm-thick gold film on a silica substrate. To improve the surface quality ...
متن کاملDielectrophoresis-Enhanced Plasmonic Sensing with Gold Nanohole Arrays
We experimentally demonstrate dielectrophoretic concentration of biological analytes on the surface of a gold nanohole array, which concurrently acts as a nanoplasmonic sensor and gradient force generator. The combination of nanohole-enhanced dielectrophoresis, electroosmosis, and extraordinary optical transmission through the periodic gold nanohole array enables real-time label-free detection ...
متن کاملLarge-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films
Nanostructured photonic materials enable control and manipulation of light at subwavelength scales and exhibit unique optical functionalities. In particular, plasmonic materials and metamaterials have been widely utilized to achieve spectral transmission, reflection, and absorption filters based on localized or delocalized resonances arising from the interaction of photons with nanostructured m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 15 شماره
صفحات -
تاریخ انتشار 2014